Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.324
Filtrar
1.
Gene ; 906: 148239, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325666

RESUMO

2-nitroaniline (2-NA) is an environmental pollutant and has been extensively used as intermediates in organic synthesis. The presence of 2-NA in the environment is not only harmful for aquatic life but also mutagenic for human beings. In this study, we constructed transgenic rice expressing an Old Yellow Enzyme gene, ScOYE3, from Saccharomyces cerevisiae. The ScOYE3 transgenic plants were comprehensively investigated for their biochemical responses to 2-NA treatment and their 2-NA phytoremediation capabilities. Our results showed that the rice seedlings exposed to 2-NA stress, showed growth inhibition and biomass reduction. However, the transgenic plants exhibited strong tolerance to 2-NA stress compared to wild-type plants. Ectopic expression of ScOYE3 could effectively protect transgenic plants against 2-NA damage, which resulted in less reactive oxygen species accumulation in transgenic plants than that in wild-type plants. Our phytoremediation assay revealed that transgenic plants could eliminate more 2-NA from the medium than wild-type plants. Moreover, omics analysis was performed in order to get a deeper insight into the mechanism of ScOYE3-mediated 2-NA transformation in rice. Altogether, the function of ScOYE3 during 2-NA detoxification was characterized for the first time, which serves as strong theoretical support for the phytoremediation potential of 2-NA by Old Yellow Enzyme genes.


Assuntos
Compostos de Anilina , Oryza , Humanos , Oryza/genética , Oryza/metabolismo , Saccharomyces cerevisiae/metabolismo , NADPH Desidrogenase/genética , NADPH Desidrogenase/metabolismo , Biodegradação Ambiental , Expressão Ectópica do Gene , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Int J Biol Macromol ; 262(Pt 2): 130129, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354939

RESUMO

(R)-Citronellal is a valuable molecule as the precursor for the industrial synthesis of (-)-menthol, one of the worldwide best-selling compounds in the flavors and fragrances field. However, its biocatalytic production, even from the optically pure substrate (E)-citral, is inherently limited by the activity of Old Yellow Enzyme (OYE). Herein, we rationally designed a different approach to increase the activity of OYE in biocatalytic production. The activity of OYE from Corynebacterium glutamicum (CgOYE) is increased, as well as superior thermal stability and pH tolerance via truncating the different lengths of regions at N-terminal of CgOYE. Next, we converted the truncation mutant N31-CgOYE, a protein involved in proton transfer for the asymmetric hydrogenation of CC bonds, into highly (R)- and (S)-stereoselective enzymes using only three mutations. The mixture of racemic (E/Z)-citral is reduced into the (R)-citronellal with ee and conversion up to 99 % by the mutant of CgOYE, overcoming the problem of the reduction for the mixtures of (E/Z)-citral in biocatalytic reaction. The present work provides a general and effective strategy for improving the activity of OYE, in which the partially conserved histidine residues provide "tunable gating" for the enantioselectivity for both the (R)- and (S)-isomerases.


Assuntos
Aldeídos , NADPH Desidrogenase , Prótons , NADPH Desidrogenase/química , NADPH Desidrogenase/genética , NADPH Desidrogenase/metabolismo , Monoterpenos Acíclicos
3.
J Neuromuscul Dis ; 11(2): 485-491, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38217609

RESUMO

Background: The NADH dehydrogenase [ubiquinone] iron-sulfur protein 6 (NDUFS6) gene encodes for an accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (complex I). Bi-allelic NDUFS6 variants have been linked with a severe disorder mostly reported as a lethal infantile mitochondrial disease (LMID) or Leigh syndrome (LS). Objective: Here, we identified a homozygous variant (c.309 + 5 G > A) in NDUFS6 in one male patient with axonal neuropathy accompanied by loss of small fibers in skin biopsy and further complicated by optic atrophy and borderline intellectual disability. Methods: To address the pathogenicity of the variant, biochemical studies (mtDNA copy number quantification, ELISA, Proteomic profiling) of patient-derived leukocytes were performed. Results: The analyses revealed loss of NDUFS6 protein associated with a decrease of three further mitochondrial NADH dehydrogenase subunit/assembly proteins (NDUFA12, NDUFS4 and NDUFV1). Mitochondrial copy number is not altered in leukocytes and the mitochondrial biomarker GDF15 is not significantly changed in serum. Conclusions: Hence, our combined clinical and biochemical data strengthen the concept of NDUFS6 being causative for a very rare form of axonal neuropathy associated with optic atrophy and borderline intellectual disability, and thus expand (i) the molecular genetic landscape of neuropathies and (ii) the clinical spectrum of NDUFS6-associated phenotypes.


Assuntos
Deficiência Intelectual , Atrofia Óptica , Humanos , Masculino , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , NADPH Desidrogenase/metabolismo , Atrofia Óptica/genética , Proteômica
4.
Appl Microbiol Biotechnol ; 108(1): 134, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229304

RESUMO

Old yellow enzymes (OYEs) have been proven as powerful biocatalysts for the asymmetric reduction of activated alkenes. Fungi appear to be valuable sources of OYEs, but most of the fungal OYEs are unexplored. To expand the OYEs toolbox, a new thermophilic-like OYE (AfOYE1) was identified from Aspergillus flavus strain NRRL3357. The thermal stability analysis showed that the T1/2 of AfOYE1 was 60 °C, and it had the optimal temperature at 45 °C. Moreover, AfOYE1 exhibited high reduction activity in a wide pH range (pH 5.5-8.0). AfOYE1 could accept cyclic enones, acrylamide, nitroalkenes, and α, ß-unsaturated aldehydes as substrates and had excellent enantioselectivity toward prochiral alkenes (> 99% ee). Interestingly, an unexpected (S)-stereoselectivity bioreduction toward 2-methylcyclohexenone was observed. The further crystal structure of AfOYE1 revealed that the "cap" region from Ala132 to Thr182, the loop of Ser316 to Gly325, α short helix of Arg371 to Gln375, and the C-terminal "finger" structure endow the catalytic cavity of AfOYE1 quite deep and narrow, and flavin mononucleotide (FMN) heavily buried at the bottom of the active site tunnel. Furthermore, the catalytic mechanism of AfOYE1 was also investigated, and the results confirmed that the residues His211, His214, and Tyr216 compose its catalytic triad. This newly identified thermophilic-like OYE would thus be valuable for asymmetric alkene hydrogenation in industrial processes. KEY POINTS: A new thermophilic-like OYE AfOYE1 was identified from Aspergillus flavus, and the T1/2 of AfOYE1 was 60 °C AfOYE1 catalyzed the reduction of 2-methylcyclohexenone with (S)-stereoselectivity The crystal structure of AfOYE1 was revealedv.


Assuntos
Aspergillus flavus , NADPH Desidrogenase , Aspergillus flavus/metabolismo , NADPH Desidrogenase/metabolismo , Domínio Catalítico , Catálise , Alcenos
5.
Sci Rep ; 13(1): 22193, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38092874

RESUMO

We investigated aging-related changes in nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) in the spinal cord of aged dogs. At all levels of the spinal cord examined, NADPH-d activities were observed in neurons and fibers in the superficial dorsal horn (DH), dorsal gray commissure (DGC) and around the central canal (CC). A significant number of NADPH-d positive macro-diameter fibers, termed megaloneurites, were discovered in the sacral spinal cord (S1-S3) segments of aged dogs. The distribution of megaloneurites was characterized from the dorsal root entry zone (DREZ) into the superficial dorsal horn, along the lateral collateral pathway (LCP) to the region of sacral parasympathetic nucleus (SPN), DGC and around the CC, but not in the cervical, thoracic and lumbar segments. Double staining of NADPH-d histochemistry and immunofluorescence showed that NADPH-d positive megaloneurites co-localized with vasoactive intestinal peptide (VIP) immunoreactivity. We believed that megaloneurites may in part represent visceral afferent projections to the SPN and/or DGC. The NADPH-d megaloneurites in the aged sacral spinal cord indicated some anomalous changes in the neurites, which might account for a disturbance in the aging pathway of the autonomic and sensory nerve in the pelvic visceral organs.


Assuntos
NADPH Desidrogenase , Óxido Nítrico Sintase , Cães , Animais , NADPH Desidrogenase/metabolismo , NADP/metabolismo , Óxido Nítrico Sintase/metabolismo , Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Envelhecimento
6.
J Comp Neurol ; 531(18): 2109-2120, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37376715

RESUMO

Anatomists have long expressed interest in neurons of the white matter, which is by definition supposed to be free of neurons. Hypotheses regarding their biochemical signature and physiological function are mainly derived from animal models. Here, we investigated 15 whole-brain human postmortem specimens, including cognitively normal cases and those with pathologic Alzheimer's disease (AD). Quantitative and qualitative methods were used to investigate differences in neuronal size and density, and the relationship between neuronal processes and vasculature. Double staining was used to evaluate colocalization of neurochemicals. Two topographically distinct populations of neurons emerged: one appearing to arise from developmental subplate neurons and the other embedded within deep, subcortical white matter. Both populations appeared to be neurochemically heterogeneous, showing positive reactivity to acetylcholinesterase (AChE) [but not choline acetyltransferase (ChAT)], neuronal nuclei (NeuN), nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d), microtubule-associated protein 2 (MAP-2), somatostatin (SOM), nonphosphorylated neurofilament protein (SMI-32), and calcium-binding proteins calbindin-D28K (CB), calretinin (CRT), and parvalbumin (PV). PV was more richly expressed in superficial as opposed to deep white matter neurons (WMNs); subplate neurons were also significantly larger than their deeper counterparts. NADPH-d, a surrogate for nitric oxide synthase, allowed for the striking morphological visualization of subcortical WMNs. NADPH-d-positive subcortical neurons tended to embrace the outer walls of microvessels, suggesting a functional role in vasodilation. The presence of AChE positivity in these neurons, but not ChAT, suggests that they are cholinoceptive but noncholinergic. WMNs were also significantly smaller in AD compared to control cases. These observations provide a landscape for future systematic investigations.


Assuntos
Doença de Alzheimer , Substância Branca , Animais , Humanos , Substância Branca/metabolismo , Acetilcolinesterase/metabolismo , NADP/metabolismo , Calbindinas/metabolismo , Neurônios/metabolismo , Calbindina 2/metabolismo , NADPH Desidrogenase/metabolismo , Doença de Alzheimer/patologia , Proteína G de Ligação ao Cálcio S100/metabolismo
7.
Biotechnol Appl Biochem ; 70(5): 1720-1730, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37073879

RESUMO

The amino acid residues at the entrance of the catalytic pocket may impose steric hindrance on the substrate to enter the active center of the enzyme. Based on the analysis of the three-dimensional structure of the Saccharomyces cerevisiae old yellow enzyme 3 (OYE3), four bulky residues were chosen and mutated to small amino acids. The results showed that mutation of the W116 residue had interesting impacts on the catalytic performance. All four variants became inactive for the reduction of (R)-carvone and (S)-carvone, but inverted the stereoselectivity for the reduction of (E/Z)-citral. The mutation of the F250 residue had a more positive effect on the activity and stereoselectivity. Two variants, F250A and F250S, showed excellent diastereoselectivity and activity for the reduction of (R)-carvone (de > 99%, c > 99%) and increased diastereoselectivity and activity for the reduction of (S)-carvone (de > 96%, c > 80%). One variant of the P295 residue, P295G, displayed excellent diastereoselectivity and activity only for the reduction of (R)-carvone (de > 99%, c > 99%). Mutation of the Y375 residue had a negative impact on the activity of the enzyme. These findings provide some solutions for rational enzyme engineering of OYE3.


Assuntos
Aminoácidos , NADPH Desidrogenase , NADPH Desidrogenase/química , NADPH Desidrogenase/genética , NADPH Desidrogenase/metabolismo , Monoterpenos Cicloexânicos , Catálise , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
8.
Carcinogenesis ; 44(2): 153-165, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-36591938

RESUMO

Pancreatic cancer (PaCa) is one of the most fatal malignancies of the digestive system, and most patients are diagnosed at advanced stages due to the lack of specific and effective tumor-related biomarkers for the early detection of PaCa. miR-492 has been found to be upregulated in PaCa tumor tissue and may serve as a potential therapeutic target. However, the molecular mechanisms by which miR-492 promotes PaCa tumor growth and progression are unclear. In this study, we first found that miR-492 in enhancer loci activated neighboring genes (NR2C1/NDUFA12/TMCC3) and promoted PaCa cell proliferation, migration, and invasion in vitro. We also observed that miR-492-activating genes significantly enriched the TGF-ß/Smad3 signaling pathway in PaCa to promote epithelial-mesenchymal transition (EMT) during tumorigenesis and development. Using CRISPR-Cas9 and ChIP assays, we further observed that miR-492 acted as an enhancer trigger, and that antagomiR-492 repressed PaCa tumorigenesis in vivo, decreased the expression levels of serum TGF-ß, and suppressed the EMT process by downregulating the expression of NR2C1. Our results demonstrate that miR-492, as an enhancer trigger, facilitates PaCa progression via the NR2C1-TGF-ß/Smad3 pathway.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , Humanos , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , MicroRNAs/genética , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Neoplasias Pancreáticas/genética , Carcinogênese/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Proteína Smad3/genética , Proteína Smad3/metabolismo , NADPH Desidrogenase/genética , NADPH Desidrogenase/metabolismo , Neoplasias Pancreáticas
9.
Biochemistry ; 62(3): 873-891, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36637210

RESUMO

The stereoselective reduction of alkenes conjugated to electron-withdrawing groups by ene-reductases has been extensively applied to the commercial preparation of fine chemicals. Although several different enzyme families are known to possess ene-reductase activity, the old yellow enzyme (OYE) family has been the most thoroughly investigated. Recently, it was shown that a subset of ene-reductases belonging to the flavin/deazaflavin oxidoreductase (FDOR) superfamily exhibit enantioselectivity that is generally complementary to that seen in the OYE family. These enzymes belong to one of several FDOR subgroups that use the unusual deazaflavin cofactor F420. Here, we explore several enzymes of the FDOR-A subgroup, characterizing their substrate range and enantioselectivity with 20 different compounds, identifying enzymes (MSMEG_2027 and MSMEG_2850) that could reduce a wide range of compounds stereoselectively. For example, MSMEG_2027 catalyzed the complete conversion of both isomers of citral to (R)-citronellal with 99% ee, while MSMEG_2850 catalyzed complete conversion of ketoisophorone to (S)-levodione with 99% ee. Protein crystallography combined with computational docking has allowed the observed stereoselectivity to be mechanistically rationalized for two enzymes. These findings add further support for the FDOR and OYE families of ene-reductases displaying general stereocomplementarity to each other and highlight their potential value in asymmetric ene-reduction.


Assuntos
Mycobacterium smegmatis , Oxirredutases , Oxirredutases/metabolismo , Mycobacterium smegmatis/metabolismo , Oxirredução , NADPH Desidrogenase/química , NADPH Desidrogenase/metabolismo
10.
Neurochem Res ; 48(1): 210-228, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36064822

RESUMO

Temporal lobe epilepsy is the most drug-resistant type with the highest incidence among the other focal epilepsies. Metabolic manipulations are of great interest among others, glycolysis inhibitors like 2-deoxy D-glucose (2-DG) being the most promising intervention. Here, we sought to investigate the effects of 2-DG treatment on cellular and circuit level electrophysiological properties using patch-clamp and local field potentials recordings and behavioral alterations such as depression and anxiety behaviors, and changes in nitric oxide signaling in the intrahippocampal kainic acid model. We found that epileptic animals were less anxious, more depressed, with more locomotion activity. Interestingly, by masking the effect of increased locomotor activity on the parameters of the zero-maze test, no altered anxiety behavior was noted in epileptic animals. However, 2-DG could partially reverse the behavioral changes induced by kainic acid. The findings also showed that 2-DG treatment partially suppresses cellular level alterations while failing to reverse circuit-level changes resulting from kainic acid injection. Analysis of NADPH-diaphorase positive neurons in the CA1 area of the hippocampus revealed that the number of positive neurons was significantly reduced in dorsal CA1 of the epileptic animals and 2-DG treatment did not affect the diminishing effect of kainic acid on NADPH-d+ neurons in the CA1 area. In the control group receiving 2-DG, however, an augmented NADPH-d+ cell number was noted. These data suggest that 2-DG cannot suppress epileptiform activity at the circuit-level in this model of epilepsy and therefore, may fail to control the seizures in temporal lobe epilepsy cases.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Animais , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/prevenção & controle , Ácido Caínico/toxicidade , NADPH Desidrogenase/metabolismo , NADPH Desidrogenase/farmacologia , Glucose/metabolismo , NADP/metabolismo , Hipocampo/metabolismo , Epilepsia/metabolismo , Neurônios/metabolismo , Desoxiglucose/farmacologia , Desoxiglucose/uso terapêutico , Glicólise , Modelos Animais de Doenças
11.
Plant Physiol ; 190(3): 1997-2016, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35946757

RESUMO

Exposure of Arabidopsis (Arabidopsis thaliana) to 4°C imprints a cold memory that modulates gene expression in response to a second (triggering) stress stimulus applied several days later. Comparison of plastid transcriptomes of cold-primed and control plants directly before they were exposed to the triggering stimulus showed downregulation of several subunits of chloroplast NADPH dehydrogenase (NDH) and regulatory subunits of ATP synthase. NDH is, like proton gradient 5 (PGR5)-PGR5-like1 (PGRL1), a thylakoid-embedded, ferredoxin-dependent plastoquinone reductase that protects photosystem I and stabilizes ATP synthesis by cyclic electron transport (CET). Like PGRL1A and PGRL1B transcript levels, ndhA and ndhD transcript levels decreased during the 24-h long priming cold treatment. PGRL1 transcript levels were quickly reset in the postcold phase, but expression of ndhA remained low. The transcript abundances of other ndh genes decreased within the next days. Comparison of thylakoid-bound ascorbate peroxidase (tAPX)-free and transiently tAPX-overexpressing or tAPX-downregulating Arabidopsis lines demonstrated that ndh expression is suppressed by postcold induction of tAPX. Four days after cold priming, when tAPX protein accumulation was maximal, NDH activity was almost fully lost. Lack of the NdhH-folding chaperonin Crr27 (Cpn60ß4), but not lack of the NDH activity modulating subunits NdhM, NdhO, or photosynthetic NDH subcomplex B2 (PnsB2), strengthened priming regulation of zinc finger of A. thaliana 10, which is a nuclear-localized target gene of the tAPX-dependent cold-priming pathway. We conclude that cold-priming modifies chloroplast-to-nucleus stress signaling by tAPX-mediated suppression of NDH-dependent CET and that plastid-encoded NdhH, which controls subcomplex A assembly, is of special importance for memory stabilization.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Complexo de Proteínas do Centro de Reação Fotossintética , Arabidopsis/genética , Arabidopsis/metabolismo , Ascorbato Peroxidases/genética , Ascorbato Peroxidases/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , NADPH Desidrogenase/genética , NADPH Desidrogenase/metabolismo , Cloroplastos/metabolismo , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Transporte de Elétrons , Trifosfato de Adenosina/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Proteínas de Membrana/metabolismo
12.
Exp Brain Res ; 240(10): 2569-2580, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35947168

RESUMO

At present, one of the main therapeutic challenges comprises the development of technologies to improve the life quality of people suffering from different types of body paralysis, through the reestablishment of sensory and motor functions. In this regard, brain-machine interfaces (BMI) offer hope to effectively mitigate body paralysis through the control of paralyzed body parts by brain activity. Invasive BMI use chronic multielectrode implants to record neural activity directly from the brain tissue. While such invasive devices provide the highest amount of usable neural activity for BMI control, they also involve direct damage to the nervous tissue. In the cerebral cortex, high levels of the enzyme NADPH diaphorase (NADPH-d) characterize a particular class of interneurons that regulates neuronal excitability and blood supply. To gain insight into the biocompatibility of invasive BMI, we assessed the impact of chronic implanted tungsten multielectrode bundles on the distribution and morphology of NADPH-d-reactive neurons in the rat frontal cortex. NADPH-d neuronal labeling was correlated with glial response markers and with indices of healthy neuronal activity measured by electrophysiological recordings performed up to 3 months after multielectrode implantation. Chronic electrode arrays caused a small and quite localized structural disturbance on the implanted site, with neuronal loss and glial activation circumscribed to the site of implant. Electrodes remained viable during the entire period of implantation. Moreover, neither the distribution nor the morphology of NADPH-d neurons was altered. Overall, our findings provide additional evidence that tungsten multielectrodes can be employed as a viable element for long-lasting therapeutic BMI applications.


Assuntos
NADPH Desidrogenase , Tungstênio , Animais , Lobo Frontal , Humanos , Microeletrodos , NADP , NADPH Desidrogenase/metabolismo , Neurônios/metabolismo , Paralisia , Ratos
13.
Insect Biochem Mol Biol ; 147: 103812, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35820537

RESUMO

Farnesol dehydrogenase (FDL) orchestrates the oxidation reaction catalyzing farnesol to farnesal, a key step in the juvenile hormone (JH) biosynthesis pathway of insects and hence, represents a lucrative target for developing insect growth regulators (IGRs). However, information on the structural and functional characterization of JH-specific farnesol dehydrogenase in insects remains elusive. Herein, we identified a transcript that encodes farnesol dehydrogenase (HaFDL) from Helicoverpa armigera, a major pest of cotton. The investigations of molecular assembly, biochemical analysis and spatio-temporal expression profiling showed that HaFDL exists as a soluble homo-tetrameric form, exhibits a broad substrate affinity and is involved in the JH-specific farnesol oxidation in H. armigera. Additionally, the study presents the first crystal structure of the HaFDL-NADP enzyme complex determined at 1.6 Å resolution. Structural analysis revealed that HaFDL belongs to the NADP-specific cP2 subfamily of the classical short-chain dehydrogenase/reductase (SDR) family and exhibits typical structural features of those enzymes including the conserved nucleotide-binding Rossman-fold. The isothermal titration calorimetry (ITC) showed a high binding affinity (dissociation constant, Kd, 3.43 µM) of NADP to the enzyme. Comparative structural analysis showed a distinct substrate-binding pocket (SBP) loop with a spacious and hydrophobic substrate-binding pocket in HaFDL, consistent with the biochemically observed promiscuous substrate specificity. Finally, based on the crystal structure, substrate modeling and structural comparison with homologs, a two-step reaction mechanism is proposed. Overall, the findings significantly impact and contribute to our understanding of farnesol dehydrogenase functional properties in JH biosynthesis in H. armigera.


Assuntos
Farneseno Álcool , Mariposas , Animais , Sítios de Ligação , Farneseno Álcool/metabolismo , Gossypium , Insetos/metabolismo , Hormônios Juvenis/metabolismo , Mariposas/genética , Mariposas/metabolismo , Álcool Oxidorredutases Dependentes de NAD(+) e NADP(+) , NADP/metabolismo , NADPH Desidrogenase/metabolismo
14.
Appl Biochem Biotechnol ; 194(11): 4999-5016, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35687305

RESUMO

The application of immobilized enzymes in pharmaceutical and bulk chemical production has been shown to be economically viable. We demonstrate the exceptional performance of a method that immobilizes the old yellow enzyme YqjM and glucose dehydrogenase (GDH) on resin for the asymmetric hydrogenation (AH) of C = C bonds in a SpinChem reactor. When immobilized YqjM and GDH are reused 10 times, the conversion of 2-methylcyclopentenone could reach 78%. Which is because the rotor of the SpinChem reactor effectively reduces catalyst damage caused by shear force in the reaction system. When the substrate concentration is 175 mM, an 87% conversion of 2-methylcyclopentenone is obtained. The method is also observed to perform well for the AH of C = C bonds in other unsaturated carbonyl compounds with the SpinChem reactor. Thus, this method has great potential for application in the enzymatic production of chiral compounds.


Assuntos
Glucose 1-Desidrogenase , NADPH Desidrogenase , Glucose 1-Desidrogenase/metabolismo , Hidrogenação , NADPH Desidrogenase/metabolismo , Enzimas Imobilizadas , Preparações Farmacêuticas
15.
Protein Expr Purif ; 199: 106135, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35760253

RESUMO

l-Arginine dehydrogenase (L-ArgDH) is an amino acid dehydrogenase which catalyzes the reversible oxidative deamination of l-arginine to the oxo analog in the presence of NAD(P)+. We here found the gene homolog of L-ArgDH in genome data of Pseudomonas veronii and succeeded in expression of P. veronii JCM11942 gene in E. coli. The gene product exhibited strong NADP+-dependent L-ArgDH activity. The enzyme was unstable, but markedly stabilized by the addition of 10% glycerol. The enzyme first purified to homogeneity consisted of a homodimeric protein with a molecular mass of about 65 kDa. The enzyme selectively catalyzed NADP+-dependent l-arginine oxidation with maximal activity at pH 9.5. The apparent Km values for l-arginine and NADP+ were 2.5 and 0.21 mM, respectively. The nucleotide sequence coding the enzyme gene was determined and the amino acid sequence was deduced from the nucleotide sequence. The simple colorimetric microassay for l-arginine using the enzyme was achieved.


Assuntos
Arginina , NADPH Desidrogenase , Aminoácido Oxirredutases , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , NADP/metabolismo , NADPH Desidrogenase/metabolismo , Pseudomonas/genética , Especificidade por Substrato
16.
Int J Mol Sci ; 23(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35328465

RESUMO

Aiming at expanding the portfolio of Old Yellow Enzymes (OYEs), which have been systematically studied to be employed in the chemical and pharmaceutical industries as useful biocatalysts, we decided to explore the immense reservoir of filamentous fungi. We drew from the genome of the two Ascomycetes Aspergillus niger and Botryotinia fuckeliana four new members of the OYE superfamily belonging to the classical and thermophilic-like subfamilies. The two BfOYEs show wider substrate spectra than the AnOYE homologues, which appear as more specialized biocatalysts. According to their mesophilic origins, the new enzymes neither show high thermostability nor extreme pH optimums. The crystal structures of BfOYE4 and AnOYE8 have been determined, revealing the conserved features of the thermophilic-like subclass as well as unique properties, such as a peculiar N-terminal loop involved in dimer surface interactions. For the classical representatives BfOYE1 and AnOYE2, model structures were built and analyzed, showing surprisingly wide open access to the active site cavities due to a shorter ß6-loop and a disordered capping subdomain.


Assuntos
Ascomicetos , NADPH Desidrogenase , Ascomicetos/metabolismo , Domínio Catalítico , NADPH Desidrogenase/metabolismo , Especificidade por Substrato
17.
Chemistry ; 28(21): e202103949, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35133702

RESUMO

Biocatalysis integrate microbiologists, enzymologists, and organic chemists to access the repertoire of pharmaceutical and agrochemicals with high chemoselectivity, regioselectivity, and enantioselectivity. The saturation of carbon-carbon double bonds by biocatalysts challenges the conventional chemical methodology as it bypasses the use of precious metals (in combination with chiral ligands and molecular hydrogen) or organocatalysts. In this line, Ene-reductases (ERs) from the Old Yellow Enzymes (OYEs) family are found to be a prominent asymmetric biocatalyst that is increasingly used in academia and industries towards unparalleled stereoselective trans-hydrogenations of activated C=C bonds. ERs gained prominence as they were used as individual catalysts, multi-enzyme cascades, and in conjugation with chemical reagents (chemoenzymatic approach). Besides, ERs' participation in the photoelectrochemical and radical-mediated process helps to unlock many scopes outside traditional biocatalysis. These up-and-coming methodologies entice the enzymologists and chemists to explore, expand and harness the chemistries displayed by ERs for industrial settings. Herein, we reviewed the last five year's exploration of organic transformations using ERs.


Assuntos
NADPH Desidrogenase , Oxirredutases , Biocatálise , Carbono , Técnicas de Química Sintética , NADPH Desidrogenase/metabolismo , Oxirredutases/química
18.
Enzyme Microb Technol ; 156: 110001, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35151127

RESUMO

In this study, a novel kind of Ni-NTA modified monodispersed SiO2 nanoflowers (Ni-NTA@SiO2 nanoflowers) were successfully synthesized. The obtained Ni-NTA@SiO2 nanoflowers were used to specifically adsorb and purify His-tagged old yellow enzyme (OYE1) and glucose dehydrogenase (GDH), which allows access to optically pure (3 S)- 3-methyl-cyclohexanone through asymmetric hydrogenation reaction, and forms a cofactor regeneration system. The protein loading amount on Ni-NTA@SiO2 nanoflowers was 40.17 mg/g support and the activity recoveries of OYE1 and GDH were 81.53% and 79.68%, respectively. The effects of pH and temperature on the activity of free and co-immobilized enzymes were investigated, and the stability as well as reusability were also measured. Compared to free enzymes, the co-immobilized enzymes showed higher thermal and storage stability. The co-immobilized enzymes were applied to asymmetric reduction of CC bonds for the synthesis of a chiral center with excellent enantioselectivity (ee > 99%), and the conversion was 46.02% after 7 cycles. This work introduced a one-pot multi-enzyme purification and co-immobilization strategy to construct efficient cofactor regeneration system with high activity and stability.


Assuntos
Enzimas Imobilizadas , Glucose 1-Desidrogenase , Enzimas Imobilizadas/metabolismo , Glucose 1-Desidrogenase/metabolismo , Hidrogenação , NADPH Desidrogenase/metabolismo , Dióxido de Silício/química
19.
Bioorg Chem ; 120: 105601, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35033816

RESUMO

NADPH-dependent amino acid dehydrogenases (AADHs) are favorable enzymes to construct artificial biosynthetic pathways in whole-cell for high-value noncanonical amino acids (NcAAs) production. Glutamate dehydrogenases (GluDHs) represent attractive candidates for the development of novel NADPH-dependent AADHs. Here, we report the development of a novel NADPH-dependent phenylglycine dehydrogenase by combining active pocket engineering and hinge region engineering of a GluDH from Pseudomonas putida (PpGluDH). The active pocket of PpGluDH was firstly tailored to optimize its binding mode with bulky substrate α-oxobenzeneacetic acid (α-OA), and then, the hinge region was further engineered to tune the protein conformational dynamics, which finally resulted in a mutant M3 (T196A/T121I/L123D) with a 103-fold increase of catalytic efficiency (kcat/Km) toward α-OA. The M3 mutant exhibited high catalytic performance in both in vitro biocatalysis preparation and in vivo biosynthesis of l-phenylglycine, indicating its promising practical applications. Our results demonstrated that co-engineering of the active pocket and hinge region is an effective strategy for developing novel NADPH-dependent AADHs from GluDHs for NcAAs production.


Assuntos
Glutamato Desidrogenase , NADPH Desidrogenase , Aminoácido Oxirredutases/química , Aminoácido Oxirredutases/metabolismo , Aminoácidos/metabolismo , Glutamato Desidrogenase/química , Glutamato Desidrogenase/metabolismo , Cinética , NADP/metabolismo , NADPH Desidrogenase/metabolismo
20.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830333

RESUMO

Temperature-sensitive male sterility is a heritable agronomic trait affected by genotype-environment interactions. In rapeseed (Brassica napus), Polima (pol) temperature-sensitive cytoplasmic male sterility (TCMS) is commonly used for two-line breeding, as the fertility of pol TCMS lines can be partially restored at certain temperatures. However, little is known about the underlying molecular mechanism that controls fertility restoration. Therefore, we aimed to investigate the fertility conversion mechanism of the pol TCMS line at two different ambient temperatures (16 °C and 25 °C). Our results showed that the anthers developed and produced vigorous pollen at 16 °C but not at 25 °C. In addition, we identified a novel co-transcript of orf224-atp6 in the mitochondria that might lead to fertility conversion of the pol TCMS line. RNA-seq analysis showed that 1637 genes were significantly differentially expressed in the fertile flowers of 596-L when compared to the sterile flower of 1318 and 596-H. Detailed analysis revealed that differentially expressed genes were involved in temperature response, ROS accumulation, anther development, and mitochondrial function. Single-molecule long-read isoform sequencing combined with RNA sequencing revealed numerous genes produce alternative splicing transcripts at high temperatures. Here, we also found that alternative oxidase, type II NAD(P)H dehydrogenases, and transcription factor Hsfs might play a crucial role in male fertility under the low-temperature condition. RNA sequencing and bulked segregant analysis coupled with whole-genome sequencing identified the candidate genes involved in the post-transcriptional modification of orf224. Overall, our study described a putative mechanism of fertility restoration in a pol TCMS line controlled by ambient temperature that might help utilise TCMS in the two-line breeding of Brassica crops.


Assuntos
Brassica napus/genética , Melhoramento Vegetal/métodos , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Brassica napus/metabolismo , Fertilidade/genética , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Mitocôndrias/genética , Mitocôndrias/metabolismo , NADPH Desidrogenase/genética , NADPH Desidrogenase/metabolismo , Proteínas de Plantas/metabolismo , Pólen/genética , Pólen/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reprodução/genética , Temperatura , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...